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Abstract 

Local ADHM theory has been discussed; after making some general remarks about Penrose 
transform and methods of monad, we construct holomorphic vector bundles on the neighbourhood 
of a projective line in the twistor space. By inverse Ward transformation this corresponds to local 
solution space of self-dual Yang-Mills equation. In the final section we discuss some possible 
applications of this theorem. 
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1. Introduction 

Suppose E is a Hermitian vector bundle over a compact Riemannian four-manifold and 

E has a unitary connection V whose curvature is the fundamental form F, a two-form with 
values in the endomorphism bundle of E, i.e. 

F E A2(M) ® End(E). 

The Riemannian metric allows us to decompose F into two components F+ and F_, 
due to the Hodge decomposition of A2(M). The total energy of the field F is given by the 
Yang-Mills action 

YM(F)= f IIFII2dlz:-- f tr(F A* F)dtz. 
M M 
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The Euler-Lagrange equation for this action gives us the Yang-Mills equation 

V A * F = 0 .  

The conformal invariance of the Hodge star • operator on A 2 shows that Yang-Mills equa- 

tions are conformally invariant in four dimensions. The quantity 

f tr(F A F) = f (IIF-IIe - IIF÷II2)du 
M M 

is a topological invariant of the bundle E, whose value is 8rr 2k, where k is the characteristic 

I 2 This action will be a minimum when either number c2 - ~c I . 

F+ = 0 i.e. *F = - F  or F_ = 0 i . e . * F = F ,  

depending on whether k > 0 or k < 0, such connections are called anti-instanton or 

instanton, respectively. From the Bianchi identity, V A F = 0, one can readily see that 

instantons satisfy the Yang-Mills equation. 

When G is SU(2) and k = 1, the spherically symmetric solutions about the origion 

in R 4 were  discovered by Belavin et al. [BPST75]. For k > 1, this has been extended 

by 'tHooft (unpublished) and Jackiw et al. [JNR77]. These solutions can be imagined as 

superpositions of k single instantons located at different points of ~4 and the superpositions 

are achieved through some ansatz. But this ansatz failed to yield solutions for general k 

instantons. Penrose twistor theory ([At79,WW90]) provides a complete solution of the 

instanton problem for all classical groups. 

The Penrose fibration (see [PR84,PR86,At79,BE89,WW90]) 

7r" C P  3 ~ S 4 

tells us that each point of S 4 corresponds to CP j in CP 3 and the anti-self-dual (or self- 

dual) solution of the Yang-Mills equation in the conformally compactified Euclidean 

4-space in S 4 corresponds to certain global real algebraic bundles on the complex pro- 

jective space CP 3. The Atiyah-Ward correspondence [At79,Wa77] says, giving an SU(2) 

anti-instanton (solutions of anti-self-dual Yang-Mills equation) bundle on S 4 is equiv- 

alent to giving a homomorphic rank-2 vector bundle e whose restriction to each pro- 

jective line is trivial and carries a suitable real structure. In a celebrated paper Atiyah 
et al. [AHMD78] have shown using Ward correspondence and algebro-geometric tech- 

niques 'methods of monads' introduced by Horrocks and Barth [OSS80] that all instan- 

tons have a unique description in terms of linear algebra for any arbitrary compact 

classical group. 
Soon after the discovery of (global) ADHM construction [AHMD78] Hartshorne [Ha78] 

put forward a list problems about the algebraic vector bundles on projective spaces. In that 

list he also stated the problem of local ADHM as the problem of understanding vector 

bundles on a tubular neighbourhood of a projective line in the twistor space CP 3. As a hint 

he stated that this problem could also be tackled via Penrose transformations. The local 
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problem is different from the global problem in a number of  ways: for example one loses 

the second Chern class and the moduli space becomes infinite dimensional. 

Our main result is: 

Theorem 1. Let E be a vector bundle defined locally on the neighbourhood o f  a projective 

line L in CP 3 such that the bundle E is trivial when it is restricted to the line. Then bundle 

E is realized from the cohomology o f  the following monad 

V(--I) a> W b> U(I),  

where 

V : H 1 ( y 2 2 ( 1 ) / H I ( E ( - 2 ) ) ,  W : H I ( E  ® 521), U = H t ( E ( - I ) ) ,  

i.e. E = Ker b/ Im a 

2. Preliminaries 

In this section we discuss some basic features of  twister geometry ([PR84,PR86,WW90]) 

connected to our problem and some definitions regarding monads. So for convenience we 

split this section into two parts, first part is related to twistor theory and the second one 

deals with methods of monads. 

2.1. Some features o f  twistor theory 

The idea of  twistor theory is quite old and goes back to the famous Plticker-Klein re- 

lationship [WW90] where it describes the straight lines in CP 3 by the points of a quadric 

hypersurface Q in CP 5. In the Penrose twistor programme one uses the holomorphic geom- 

etry of  the twistor space to produce solutions to differential equations. Recall the Penrose 
fibration defined by r r :CP  3 ~ S 4 w i t h f i b r e z r - I ( x )  at each point x 6 S 4 i s C P  1 which 

precisely gives the compatible complex structure in TS 4. We can pull back an SU (2) bundle 
/~ on S 4 by rr to obtain an associated rank-2 bundle E on CP 3. The connection V on/~ is 

anti-self-dual if and only if the pulled back connection determines a holomorphic structure 

on E = 7r*(E). This is the basis of  the Ward transformation [Wa77,Wa90]. A connection 
with anti-self-dual curvature on the original SU(2) bundle gives an almost complex struc- 

ture on E and the anti-self-duality condition provides the integrability condition needed for 

E to be a holomorphic rank-2 vector bundle on CP 3 and since the bundle comes from the 
bundle over S 4 it carries a real structure. The relevant anti-holomorphic involution is given 
by k : CP 3 ~ CP 3, 

k(zl, ze, z3, z4) = (-z-2, +Z-l, -z-4, +z-3), 

where zis are homogeneous coordinates on CP 3. This map is conjugate linear in the sense 

that kO~z) = ~k(z) for any ~. ~ C and z E C 4. Each fbre  zr -1 (x) is a k-invariant projective 
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line and the restriction of  the pull-back bundle E on each real line 7r- l (x)  is trivial. Also 

one can easily see that the induced automorphism of the space of  lines can be realized as 

the complex conjugate of  Pliicker coordinates of  the quadric, thus real points QR of the 

quadric Q correspond to real lines in CP 3 (cf. [WW90]). 

So that holomorphic vector bundles E coming from instantons over CP 3 have zero first 

Chern class (which is clear since the structure group is SU(2) so de tE  is trivial) and 

the instanton number k is the second Chern class c2(E). We know from GAGA [Se561 

that all holomorphic bundles on the projective spaces have unique algebraic structures. 

Fixing cl = 0 and c2 = k (say) we can define the moduli space Mk of  stable algebraic 

rank-2 vector bundles on CP 3. The bundles coming from instantons have some characteristic 

features which we will discuss in Section 2.2. 

2.2. Methods o f  monads 

There are two main ways of studying vector bundles over complex projective spaces. 

One is via curves and jumping line, the other is by monads [OSS80]. The idea is twist the 

bundle E by O(n)  so that the new bundle E(n)  has plenty of  global sections. I fs  is a generic 

section then the set of points in CP 3 where s becomes zero will be a curve, C, in CP 3. With 

the given curve and some algebraic data and machinery one can recover E. The second 

method is the most seccessful and widely used technique. 

A monad is a pair of maps of holomorphic vector bundle over a complex manifold A/l, 

L(--1) a) M b> N( I ) ,  

such that a is injective and b is surjective and the composite map ba -- 0 everywhere. 

The bundle E = Ker b / Im  a is the 'cohomology '  of  the monad. If the rank of the vector 

bundle is k then the dimensions of the L, M and N vector spaces would be n, 2n + k and n, 

respectively. 

The word monad was used by Horrocks. The idea of  this method is to constuct compli- 

cated bundles from three simpler bundles L, M and N over the .Ad. The process of taking 

cohomology of a complex is in general functorial, so that two monads which are isomorphic 

(in the categorical sense) define isomorphic vector bundles. 

In order to see how the connection arises from the monad we shall follow Donaldson 

[Do85]. Let X be the two-dimensional vector space underlying P ( X )  = PJ. Here "a' is an 

element of  X* ® Hom(L,  M) and 'b '  is an element of  X* ® Hom(M,  N). 

Composition defines an element 'c '  of  X* ® X 'Horn  (L, N). Since ba = 0 is satisfied 

everywhere, c is skew-symmetric on X*. The condition that the bundle E be holomorphically 

trivial on the projective line is that 

A2X * ® H o m  (L, N) -~ Horn (L, N)  

is an isomorphism. 
Following Donaldson, this triviality condition can be re-expressed by choosing two dis- 

tinct points m, n in the projective line. Thus we obtain four linear subspaces of the vector 

space M, given by 
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IImamlkerbml 
Ilmanlkerbn[ 

Elementary linear algebra shows that the restriction of  E is naturally isomorphic to the 

subspace 

ker bm A ker bn C M 

and also to the quotient, 

M /Im am 4:- Im an. 

The above two descriptions mean that the fibre of  the associated bundle E '  comes as a 

projective subspace of the fixed vector space M equipped with maps 

i 
EI ~_M. 

Now using these projective maps we know to define connection of a subbundle of a fixed 

vector space. Suppose M has the fiat connection 7 and we have a smooth bundle projection 

Jr: M ~ E ~, which is a left inverse to the inclusion map i. Then we get an induced 

connection A on E t with covariant derivative 

zr o V o i (s ) .  

Thus we get a connection on any bundle E associated to monad on the twistor space. 

In principle the use of  monads reduces the study of vector bundles to linear algebra. 

Once we obtain a vector bundle from the monad then the inverse Ward correspondence 

[Wa77,Wa90] gives the general ADHM description of  all self-dual gauge fields over S 4. 
When the bundles have some additional structure then this additional structure goes 

into the monad automatically [Ha79]. Let E be the sheaf of  holomorphic (or algebraic) 

sections of rr*(E) over CP 3. Suppose the coherent sheaves have the following vanishing 

cohomologies: 

H°(C(m))=O fo rm < - 1 ,  H I ( E ( m ) ) = 0  fo rm < - 2 ,  

H2(£(m)) = 0  fo rm _> - 2 ,  H3(£(m)) = 0  fo rm > - 3 .  

The coherent sheaves on CP 3 with these properties are called admissible sheaves (see 

[MD78,Ha78]) and the corresponding monad will be a special monad. There is a functorial 
equivalence between the category of  special monads and the category of admissible sheaves. 
In order to prove the vanishing of  these cohomologies it suffices to show the vanishing of 

the first two cohomologies. The other two follow form the Serre duality, 

H i ( e ( m ) )  * ~ H 3 - i ( E * ( - 4  - m)) .  

The fibres of Jr : CP 3 ~ S 4 are the projective lines in CP 3 and the restriction of e to them 

is holomorphically trivial and for that reason H°(CP l , O(m)) = 0 when m < 0, hence 
H ° ( C  P 1, E(m))  = O. 
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Since in the entire calculation we have used the local version of Beilinson's spectral 

sequence ([Be78,OSS80]). To keep the paper self-concise we give the statement of  the 

theorem without proof (for proof  see [OSS80]). 

Theo rem 2 (see [Be78,OSS80, 3.1.4]). Let E be an m-dimensional holomorphic bundle 

over the Zariski open subset U o f  CP n then there exists a spectral sequence EP7 q with 

Er - t e rm 

E~ 'q = Hq (u ,  E @ ff2-P ( -  p) ) @ Op,,(q ). 

which converges to 

E j = E . for j = 0 

and otherwise O. This means that 

EPq 0 f o r  p + q ~ 0 

and 

II 

~ -p p 
~JOC " 

p=0 

is the associated graded sheaf  o f  a filtration o f  E. 

Beilinson's work has enabled us to construct an inverse functor, i.e. it helps us to con- 

struct monads from the admissible sheaves. Consider for example the global ADHM case 

[AHMD78], the monads coming from instantons always have a special structure 

A ( - I )  ~ B  ~>C( I ) ,  

where A ( - l )  = A ® O ( - l ) ,  etc. and A, B and C are three complex vector spaces. Barth 

observed that corresponding bundles g on CP 3 with cl = 0 and c2 = k are stable and 

satisfy HI (g ( - -2 ) )  = 0, using Penrose transform we can deduce that it is equivalent to the 

condition that there are no non-zero solutions of the equation. 

J R ) s  = 0 

has no global solutions. Here A denotes Laplace-Bel t rami operator coupled to the connec- 

tion, R > 0 is the positive scalar curva tu re  o f S  4 and s is a section of/~.  

But in the local case this vanishing argument does not apply so the cohomology group 

H l ( C ( - 2 ) )  ~ 0 in the local case; moreover, this will appear in the vector spaces of  the 

monad and since the bundle is supported on a non-compact  space we cannot use Serre 

duality either. Instead of  that we will use some techniques of  several complex variables to 

deduce the vanishing of  the cohomoiogies in the spectral sequence. 
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3. Construction of  monads for local bundles 

In this section we construct the monads of holomorphic bundles on a tubular neighbour- 

hood of a projective line in C P  3. It has been known that Penrose transformation deals with 

double fibration of a generalized flag variety [BE89]. This transformation has been used in 
the local ADHM problem by localization at a point in S 4 which corresponds to localization 
near a line in C P  3. Let us recall the basic double fibration 

F f> 

C p  3 

where F is the flag variety and Q the complexification of S 4. As we choose the image variety 
of the transform a Stein subset [GR77] of the complexification of S 4. 

Definition 3. A closed subset in V of a complex space X is called Stein set (in X) if Cartan's 
'theorem B' holds good. This says for every coherent analytic sheaf ,T, 

H q ( v ,  3 ) = O  fo ra l lq  _> 1 

is valid on V. A complex space which is itself a Stein set is called a stein space. 

Given a Stein subset of Q and with the help of the map f we can pull back this Stein set 
to flag variety. Let S a be the Stein subset of Q. Suppose F a = f - l s a  is the open subset of 

flag variety then by pushing down this open subset we obtain the corresponding open subset 

of the twistor space pa.  So the basic double fibration induces a double fibration among the 
open subset 

F a f> S a 

pa 

Here ea  is the open subset of the twistor space and this can be covered by two Stein 
subsets, i.e. 

p ,  = (pa {southpole} ) U (Pa {northpole} ). 

In order to see this, let us take a small thickening of a projective line, basically this yields 
the neighbouhood of a line. We have to show thickenings can be covered by thickenings of 
two Stein subsets. 

Let us consider another projective line (say l') disjoint from the first one (say/). Let us 
consider a family of planes through F. Let nl be the neighbourhood of a line 1. This family 
defines a map, 

nl > 1. 
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Suppose the fibre of  this map is Stein, if we restrict the base to (CPl-point ) ,  we get a 

fibration by the family of planes. 

Total space is the fibration over a Stein manifold where fibres are Stein. Then by Leray 

Spectral sequence one can see that higher cohomologies vanish. 

Alternatively, one can check this in terms of some explicit  coordinates too (w, z) and 

(if', ?3, where on the overlapping neighbourhoods, ~ = z -  and ff~ = wz- 1 

One can get a smaller neighbourhood 

Izl < r lwl < R, Izl < r l ~ l  < Rr, 

so that each open set is a product of  discs and the intersection of the product of  an annulus 

and disc. 

In the case of  Stein subset which is cut out from the centre, the first cohomology does 

not vanish. 

Let Yt and Y2 be the two open centrally cut out Stein subsets o f P  a and let P" = YI U Y2 

such that HI(yi ,  3 )  ~ O. 

L e m m a  4. Let X be a complex space and V 1 and V2 be two Stein subspaces of X. Then 

VI N V2 is Stein too. 

For proof one must consult Grauert and Remmert  [GR77]. 

Propos i t ion  5. Let pa be the open subset of twistor space constructed above. Ever3., coher- 

ent analytic sheaf J ~ on pa satisfies 

H q (P", ,~) = 0 

for all q > 2. 

Proofi Since pa  = YI U Y2 using Mayer-Vietor is  sequence [BT82] we obtain 

H q - I ( Y I N Y 2 , 3 )  > H q ( p a , 3 )  > H q ( Y , , S ' , ) G H q ( Y 2 , 3 ) - - - +  . . .  > 

By theorem B of  H. Cartan we already know 

H q ( Y i , 3 ) = O  fo rq  > 1 

and 

Hq(Yl n Y2, 3 )  = 0 

by lemma 4. So Hq(pa, 3 )  = 0 for any coherent sheaf 3 when q > 1. This completes the 

proof. [] 

The result of this proposition will be used to establish the vanishing of relevant cohomol- 

ogy groups in the spectral sequence. 

Now we follow the procedure of  Drinfeld and Manin in [MD78] where they have given 

a nice procedure of constructing vector bundle using monad. Let ~ 1 denote the cotangent 
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bundle of CP 3 and ~,~n the corresponding nth exterior product of the cotangent bundle. We 

obtain the following sheaf exact sequence 

[ T c p 3 ( - - 1 ) ]  v > O C p 3  > O p  ~ O. 

Resolving into locally free modules we obtain the following Koszul complex in our case 

523(3) ~ 522(2) ~ 521(1) ~ Ocp3 ~ Op ~ O. 

Following Drinfeld-Manin [MD78] we tensor the above sequence with an arbitrary vector 

bundle E ( - 1 )  so that we obtain the following exact sequence from the Koszul complex 

52"23(2) ® E > 522(1) ® E ~ 521 ® E ~ E ( - l ) l c p 3  ~ E ( - I ) I p  ~ 0. 

In order to extract the information of the bundle E we have to go for the spectral sequence 

developed by Beilinson [Be78]. In our case the spectral sequence associated with the double 
complex would be the following one: 

H3(523(2) ® E) H3(522(1) ® E) 

H2(523(2) ® E) H2(522(1) ® E) 

H1(523(2) @ E) HJ(522(1) ® E) 

H3(52 1 ® E ) I H 3 ( E ( - 1 ) )  

H2(521 ® E )  H 2 ( E ( - I ) )  

H1(52 1 ® E) H I ( E ( - I ) )  

H°(523(2) ® E) H°(522(!) ® E) H°(52 1 ® E) H ° ( E ( - 1 ) )  

The two cohomologies are related by the operators satisfying 

lz, P+r ,q - r+l  
dr: Er  p'q :~ ~ r  

such that dr 2 = 0. When r = 1 we have the cohomology of the rows above. 

Our strategy is to find the monad corresponding to this bundle E. This is possible provided 
sufficient number of cohomoiogy groups are zero in the spectral sequence. The vanishing 
of higher cohomologies follows from our earlier result (Proposition 5) 

H3(523(2) ® E) = H3(522(1) ® E) = H3(52 1 ® E) = H 3 ( E ( - I ) )  = 0, 

and 

H2(523(2) ® E) = H2(522(1) ® E) = H2(52 1 ® E) = H 2 ( E ( - I ) )  = 0. 

Therefore, we conclude that the first two rows of the spectral sequence vanish identically. 
Our next task is to show that the bottom most row also vanishes. 

Lemrna 6. Let E be the bundle defined on the tubular neighbourhood o f  projective line. I f  

it is trivial on the line then it satisfies H ° ( E ( - k ) )  = O f o r  all k > O. 

Proof  This is a trivial case of Kodaira vanishing theorem [GH78], hence we obtain 

H ° ( O ( - k ) )  = 0 

for all k > 0. So the result follows immediately. [] 
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Claim 7. 

H°(£23(2) ® E) = H°(£23(1) @ E) = H°(£21 ® E) = H ° ( E ( - 1 ) )  = 0. 

Proqfi Restricting to a line the tangent bundle of the CP 3 fits into the exact sequence 

0 ( 2 )  ~ TCp31L :, O ( 1 ) ~ O ( 1 ) .  

Hence we obtain the following splitting of the tangent bundle 

TCp~IL = 0(2 )  @ O(1) @ O(1). 

Then the dual of  this splitting will be the splitting of the cotangent bundle. 

lTcps] v = H l --- 0 ( - 2 )  @ O ( - 1 )  • O ( - 1 ) ,  

E ® £2Jtt. = E ( - 2 )  ~ E ( - I )  ~ E l - l ) .  

So we conclude from the previous lemma 

H°(£2 j ® E) = H ° ( E ( - I ) )  = 0. 

Since £23 --- O ( - 4 ) ,  i.e. the canonical bundle of CP 3, the first cohomology group is reduced 

to 

H°(£23(2) ® E) ~ H ° ( E ( - 2 ) )  = 0. 

Hence we obtain H°(£22(1) ® E) = 0 from the spectral sequence. Then in the spectral 

sequence the whole 0th row vanishes. Thus we prove the lemma. [3 

Thus we are left with second row only which is expressed as follows: 

H1(£23(2) ® E) ~ H1(£22(1) ® E) > H1(£21 ® E) ~ H I ( E ( - I ) ) .  

Observe that the first element in the sequence is H l (£23 (2) ® E = H l (E ( -  2)), since £23 

stands for canonical line bundle of CP 3 and hence £23 = 0 ( - 4 ) .  This element vanishes 

identically in the case of bundle over S 4, but in the local case it contributes to the monad. 

This sequence of four vector spaces can be easily transformed into standard monad, i.e. a 

pair of morphisms and three vector spaces. The monad of  the local bundle E is 

[ H I ( £ 2 2 ( 1 ) ® E ) / H I ( E ( - 2 ) ) ] ® O ( - 1 )  "> H1(£21 ® E )  

t, [HI (E(_I ) ) ]®O(I )"  

where a and b are two morphisms and the bundle is recovered from the cohomology of the 

monad. 

R e m a r k  8. If we compare our chapter with the earlier paper of  Witten [Wi79] (he 

attempted this calculation for Minkowski space time) we find the following replacements: 
( 1 ) the first vector space is the quotient space H 1 ( £22 ( 1 ) ® E) / H 1 (E ( -  2 )), not the space 
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H 1 (£22(1) ® E) which was found by Witten. (2) Witten used a long exact sequence, which 

is wrong, instead of  Beil inson's  spectral sequence. Moreover, he did not show explicitly 

why the cohomologies vanished. (3) Moreover, we want to point out that unlike in the global 

case, the vector space A is not dual to C in the local case. 

Putting all the results concerning monad and local vector bundle together we obtain our 

main theorem. 

4. Identification of the cohomologies 

In this section we will identify the vector spaces appearing in the monads. In the local 

case all the vector spaces forming the monads are infinite dimensional vector spaces. They 

are the solutions of  the three auxiliary equations as Witten showed. He showed in the first 

half of  his paper that two of  the vector spaces are the solutions of  Dirac equations and the 

other one is the solution of some scalar equation. 

In order to see this in detail we must apply the Penrose transform. In this section we will 

demonstrate how to obtain the information about H l (£21). 

This approach is based on local twistor theory as shown by Lionel Mason [Ma87]. We 

will use spinorial approach [WW90]. 

Now we denote, S = Oa, and S t = 0 a and their dual are S* = 0 a' and S t* = Oa. 

So the tangent bundle 

T = S' ® S = 0 AA'. 

Hence its dual is 

,.('21 = S t* ~ S = OAA,.  

Naturally, 

0 2 = [sym2S '*] ® [A2S ~3 A2S t*] ® [sym2S]. 

The bundle L = A2S t is called determinant line bundle on Q. If  we fix the element of  

A4C 4 then we can indentify L = A2S '*. In the notation L = O[1] and L* = A2S '* = 

O [ -  1 ]. Hence we can write 

,. (22 = O(AB)[--1] ~ O(A, B,). 

Let us consider the Euler sequence on the twistor space 

0 x,Z~' 0 ~ Oa(1)  ) T ~ O. 

One can regard Z '~ as the tautological section. Dualizing the above sequence, we obtain 

0 ~ S2 ~ ~ Oo , ( -1 )×Z~o  - -+ O. 
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So from the long exact sequence we obtain 

0 > H ° ( P a , O )  > HI(pa,$-21) > H l ( p a , o c ~ ( - l ) )  > H l (pa ,  o ) .  

Penrose transformation of H 1 ( p a  Oc~ ( -  1 )) satisfies 

= 0 ,  

where V is the spin connection and ot the twistor index. 

The definition of  the local twistor and their construction then give us that q~B~ is equivalent 

to a pair of  fields ~sa',  ~]BA and these are the sections of  Oea,  and (_9/~A [-- 1 ], respectively. 
These satisfy 

B t 
VB,~B a - -  i~B,A,~I B = O, vB,  I1BA = O. 

This tells u s  b~A is the potential for the left-handed Maxwell field. 

0 > HO(pa, o )  > H l ( p a , ~  1) > HJ(pa ,Oc~( -1 ) )  ~ HI (pa  0 ) .  

Then H I(p a , O) is isomorphic to potentials modulo gauge for such fields. 
We are interested in 

0 ~ H O ( p a , o )  > HI(pa, .c2 I) > H l ( p a ,  o o r ( - l ) )  ~ H I ( p " , o ) ,  

0 ~ H ] (pa, i21)/HO(pa,  O) - - - ,  H I ( P  ", Oct(-1))  ~ H I ( P  a, 0 ) .  

We want to seek the kernel of  the map H I (p~, O~ ( -  1 )) ~ H 1 (p~, 0 ) .  

GA = VsA, f 

for some function f .  If we insert this into the first equation we obtain 

vB, VBA' f -- i6B'A'I)BA = O. 

This turns out to be 

D r =  

Then applying []  once again we obtain 

D 2 f  = 0. 

Similarly, the cohomology groups have been identified by Lionel Mason and Mike Singer 

in an unpublished article [MS87], these exactly coincide with the Witten complex as pre- 
dicted by Witten [Wi79]. 

a a(:~ B b(z~ C, 

where z denotes homogeneous coordinates of  CP 3. We decompose z into two spinors, 

z i = (rlA, xa ' ) ,  say, 
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as usual A, A '  = l,  2. In this notation,the anti-self-dual plane corresponding to z is defined 

by 

TrA'(x) := X a' __ xaa'tTa " 

Description o f  spaces: 

Space C. This is spanned by solutions of  Dirac equation 

DAA,~t A' := O. 

Let us define a spinorial derivative [PR84] 

d A' := DAA'toA , 

with this notation we can always write the above equation 

A' B r B ~ A r 
d w ( t  - d u , ~ h  = 0 ,  

so that the row vector ~A'  will form the basis of  C. 

Space B. The elements of  B are given in terms of complete basis (~b, o)~) forming row 

vectors of  linearly independent solutions of 

A r A' 
d~, 4) = w~ z , (*) 

where z ~ = (w, x w ) .  

Since space C is complete, 

o 2'= ,A'8- 

Then RHS of  (*) is 

lpa'r  l:~t ,7 et ] p t a  (x )tt A ' 
L U f f ~  J 

where 

' aa '  and (c] a ,c2A).  p tA  = C,i A q_ C2AX B~ = ' 

Hence we obtain 

DAA'~9 = ~ A ' p t A .  

Space A. The elements of  space A are the solutions of  

DAA, D20 a' = O. 

Please note that 

DAA~D AIB = D23BA . 

R e m a r k  9. The space H ] (E( - -2 ) )  is exactly 4th vector space and ke ra  (as shown by 

Witten [Wi79, p.217]). 
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Ima .  Let (¢v,w~v) ~ [im f ( z ) ]  and if we take v = B(z)w for some w. Then q~v = 
B' )~B,w:r , where we used ~ = CBc~ and oB = O,,xBB', and the definition of  anti-self-dual 

plane. 

Hence, lm a consists of scalar fields that vanish on anti-self-dual plane. 

Similarly, Witten showed that, ker g consists of scalar fields that are convariantly constant 

on the ASD plane. 

R e m a r k  10. The first part of  Witten's paper completely agrees with our result. 

Now we are in the position to lay out explicitly the local ADHM theorem. First we must 

define the data of local ADHM construction which we have already gathered from the last 

two sections. 

Data (Local): 

( 1 ) Three infinite dimensional vector spaces A, B and C where A and C are the solution 

spaces of Dirac equations and B is the solution space of  scalar equations. 

(2) D is another vector space formed by the solution of the Laplace equation on S". 

(3) The quotient space A/D,  solutions of Dirac equation modulo the harmonic solution. 

(4) Two linear maps a and b, where a: A / D  > B is an injective map and b: B - - ~  C is 

the surjective map and these give us a structure monad. These maps are linear over the 

complex projective space. 

(5) The cohomology of  the monad or the quotient space Im a /Ker  b gives the bundle from 

the local monad. 

Please note that the equivalence classes of monad means equivalence classes of ADHM 

(local) data and this gives rise to equivalent classes of  local vector bundles on the neigh- 

bourhood of a line 

Theorem 11. There exists a one to one correspondence between (a) equivalence classes vf  

local ADHM data or the equivalent classes of local vector bundles on the formal completion 

of the projective line on CP 3, (b) gauge equivalence classes of local solutions ~f self-dual 

Yang-Mills equation. 

5. Applications, discussions and open problem 

In this section we have attempted to show some applications of local ADHM, particu- 

larly from the point of  view of reduction of  self-dual Yang-Mills equation. At the end of  

this section we have focused on some of  the interesting problems concerning local vector 

bundles. 
During the last few years Ward, Mason (see for example [Wa90,MS87]) and others 

have shown that many integrable systems particularly in 1 + 1 dimensions are symmetry 

reductions of self-dual Yang-Mills equation. The motivation of  these 'phenomenological" 

works show that it could be possible to view the self-dual Yang-Mills equation is the 
universal integrable system. But it is too early to say since so far mathematical physicists 
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have failed to show famous equations like KP or Davey-Stewartson are the reductions of the 
self-dual Yang-Mills equation. But it would be rather interesting to know how geometry 

of self-dual Yang-Mills equation is related to the geometry of the reduction equations. 

Here we picked up KdV as an example to show how its geometry fits with local ADHM 
construction. We choose to work on 7?. 4 with coordinates (x, y, z, t) and the metric 

ds 2 =  dx 2 -  dy 2 - 4 d z d t .  

The Yang-Mills connection D := 0 - A where A takes values in the Lie algebra of SL(2, C) 

and these are defined upto gauge transformation 

A > hAh  - I  - (0h)h -1. 

Following Belavin and Zakharov [BZ78], the self-duality conditions become 

[Dx - Dy, Dt] = O, [Dx + Dy, Dr] = O, 

[Dx - Dy, Dx + Dy] + [Dz, Dt] : O. 

Then performing two-dimensional reduction, one null and the other time-like and by 

imposing gauge fixing condition, Mason-Spading [MS87] and Bakas-Depireux [BD91] 

showed that SDYM equation reduces to KdV equation. 

We have already encountered one-dimensional reduction (here only one non-null transla- 

tion symmetry along 0y is imposed) in the case of Bogomolny equation in •3 where Hitchin 

[Hi82] and Nahm [Na81 ] have shown this is equivalent in N4, which is in addition invariant 

under the action of the additive group R of translation in the z-direction. By means of twistor 
correspondances Hitchis showed that the SU(2) Bogomolny equation on N3 corresponds 

to a holomorphic rank-2 vector bundle E on TPI which is quaternionic and trivial on every 
real section of zr: TP1 > P1. 

In the KdV case we have gone one step further, KdV in [R 2 is equivalent to a solution 

of the self-duality equation in ~4 which is in addition invariant under the action of the 

additive group • ÷ R of translation which is a pair of orthogonal space-time translation 
one time-like and one null direction. On top of that, satisfies some gauge fixing conditions 
which we have listed below. 

Proposition 12. I f  we reduce the self-dual Yang-Mills equation by the pair o f  two orthog- 

onal Killing vectors (one is space-like and other time-like) Oy and 0 z and fixing the gauge 

(01 A,=(0 Az : _ , Ax + Ay = 0 - u  ' 

we obtain the KdV equation as the reduction o f  self-dual Yang-Mills equation. 

Let us call this data a reduction data. Recall that the monad of the local vector bundle 

H1(£22(1) ® E ) / H I ( E ( - 2 ) )  - - ~  HI(/21 ® E) ~ H I ( E ( - I ) )  

and the morphisms a and b are linear over the projective space. Now in the reduced case 
these morphisms must be two-translation-invariant and the corresponding vector bundle is 
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also two-translation-invariant. As Mason and Sparling [MS87] showed, a solution of SU(2)  

KdV equation on R 2 corresponds to a holomorphic rank-2 holomorphic vector bundles over 

T P  I on which we have the action of  an additional symmetry which corresponds to extra 

symmetry. 

In the reduction case, one important point should be noted which tells us not every 

two-translation invariant solution of  self-dual Yang-Mil ls  equation are the solutions of 

KdV, since we have imposed a null translation along O: and the gauge fixing in the same 

direction. This is finiteness condition which is similar to what Hitchin [Hi90] showed in the 

harmonic case. 

There are some open problems in the case of local vector bundle. As Hartshorne [Ha78] 

pointed out, a global bundle on C P  3 is determined by its restriction to the formal neigh- 

bourhood of a projective line so that the local problem gives us a new perspective on the 

global problem. 

There is another celebrated problem in the gauge theory that is also a local problem. 

This is the construction of  vector bundles from the full fledged Yang-Mil ls  sheaves (see 

[HM80,IYG78, Wi78]) in the neighbourhood of  some C P  I x C P  I inside the hypersurface 

lying inside C P  3 x C P  3. 
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